Part Number Hot Search : 
EC3SM AF1515 2SA1032 BD406N 0022122 T8050 FOD617C ST115006
Product Description
Full Text Search
 

To Download LD39050PVR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. october 2015 docid15470 rev 3 1/28 ld39050 500 ma low quiescent current and low noise voltage regulator datasheet - production data features ? input voltage from 1.5 to 5.5 v ? ultra low-dropout voltage (200 mv typ. at 500 ma load) ? very low quiescent current (20 a typ. at no load, 100 a typ. at 500 ma load, 1 a max. in off mode) ? very low noise without bypass capacitor ? output voltage tolerance: 2.0% @ 25 c ? 500 ma guaranteed output current ? wide range of output voltages available on request: 0.8 v to 4.5 v with 100 mv step and adjustable from 0.8 v ? logic-controlled electronic shutdown ? compatible with ceramic capacitor c out = 1 f ? internal current and thermal limit ? package dfn6 (3x3 mm) and dfn6 (2x2 mm) ? temperature range: from -40 c to 125 c description the ld39050 provides 500 ma maximum current with an input voltage range from 1.5 v to 5.5 v and a typical dropout voltage of 200 mv. stability is given by ceramic capacitors. the ultra low drop voltage, low quiescent current and low noise features make it suitable for low power battery- powered applications. power supply rejection is 65 db at low frequencies and starts to roll off at 10 khz. the enable logic control function puts the ld39050 in shutdown mode allowing a total current consumption lower than 1 a. the device also includes short-circuit constant current limiting and thermal protection. typical applications are mobile phones, hard disks and battery-powered systems. ')1 [pp ')1 [pp www.st.com
contents ld39050 2/28 docid15470 rev 3 contents 1 diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1 power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 enable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.3 power good function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1 dfn6 (3x3 mm) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.2 dfn6 (3x3 mm) packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.3 dfn6 (2x2 mm) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
docid15470 rev 3 3/28 ld39050 diagrams 28 1 diagrams figure 1. schematic diagram for the ld39050 (adjustable) current limit thermal protection out gnd opamp in power-good signal pg internal enable in adj en bandgap reference current limit thermal protection out gnd opamp in power-good signal pg internal enable in in adj en bandgap reference figure 2. schematic diagram for the ld39050 (fixed output) current limit thermal protection out gnd opamp in power-good signal pg internal enable in nc en bandgap reference r 1 r 2 current limit thermal protection out gnd opamp in power-good signal pg internal enable in in nc en bandgap reference r 1 r 2
pin configuration ld39050 4/28 docid15470 rev 3 2 pin configuration figure 3. dfn6 (3x3 mm) pin connection (top view) ld39050 (fixed version) en gnd pg vin nc vout en gnd pg vin adj vout ld39050 (adjustable version) figure 4. dfn6 (2x2 mm) pin connection (top view) /' il[hgyhuvlrq 9,1 (1 *1' 1& 9287 3* /' dgmdvwdeohyhuvlrq 9,1 (1 *1' $'- 9287 3*
docid15470 rev 3 5/28 ld39050 pin configuration 28 table 1. pin description symbol pin n for dfn6 (3x3 mm) pin n for dfn6 (2x2 mm) function ld39050 (adjustable) ld39050 (fixed) ld39050 (adjustable) ld39050 (fixed) en 1 1 2 2 enable pin logic input: low = shutdown, high = active gnd 2 2 3 3 common ground pg 3 3 4 4 power good vout 4 4 5 5 output voltage adj 5 - 6 - adjustable pin vin 6 6 1 1 input voltage of the ldo n.c. - 5 - 6 not connected gnd exposed pad exposed pad exposed pad must be connected to gnd
maximum ratings ld39050 6/28 docid15470 rev 3 3 maximum ratings note: absolute maximum ratings are those values beyond which damage to the device may occur. functional operation under these conditions is not implied. all values are referred to gnd. table 2. absolute maximum ratings symbol parameter value unit v in dc input voltage -0.3 to 7 v v out dc output voltage -0.3 to v i + 0.3 (7 v max.) v en enable pin -0.3 to v i + 0.3 (7 v max.) v pg power good pin -0.3 to 7 v adj adjustable pin 4 v i out output current internally limited p d power dissipation internally limited t stg storage temperature range - 65 to 150 c t op operating junction temperature range - 40 to 125 c table 3. thermal data symbol parameter value unit dfn6 (2x2 mm) dfn6 (3x3 mm) r thja thermal resistance junction-ambient 65 55 c/w r thjc thermal resistance junction-case 6.5 10 c/w table 4. esd performance symbol parameter test conditions value unit esd esd protection voltage hbm 2 kv cdm 500 v mm 0.3 kv
docid15470 rev 3 7/28 ld39050 electrical characteristics 28 4 electrical characteristics t j = 25 c, v in = 1.8 v, c in = c out = 1 f, i out = 10 ma, v en = v in , unless otherwise specified. table 5. electrical characteristics for the ld39050 (adjustable) symbol parameter test conditions min. typ. max. unit v in operating input voltage 1.5 5.5 v v adj v adj accuracy i out = 10 ma, t j = 25 c 784 800 816 mv i out = 10 ma, -40 c < t j < 125 c 776 800 824 i adj adjustable pin current 1 a v out static line regulation v out +1 v v in 5.5 v, i out = 1 ma 0.01 %/v v out transient line regulation (1) v in = 500 mv, i out = 10 ma, t r = 5 s 10 mvpp v in = 500 mv, i out = 10 ma, t f = 5 s 10 v out static load regulation i out = 10 ma to 500 ma 0.002 %/ma v out transient load regulation (1) i out = 10 ma to 500 ma, t r = 5 s 40 mvpp i out = 10 ma to 500 ma, t f = 5 s 40 v drop dropout voltage (2) i o = 500 ma, v out fixed to 1.5 v 40 c < t j < 125 c 200 400 mv e n output noise voltage 10 hz to 100 khz, i out = 100 ma, v out = 0.8 v 30 v rms svr supply voltage rejection v out = 0.8 v v in = 1.8 v+/-v ripple v ripple = 0.25 v, frequency = 1 khz i out = 10 ma 65 db v in = 1.8 v+/-v ripple v ripple = 0.25 v, frequency =10 khz i out = 100 ma 62 i q quiescent current i out = 0 ma 20 a i out = 0 ma, -40 c < t j < 125 c 50 i out = 0 to 500 ma 100 i out = 0 to 500 ma, -40 c electrical characteristics ld39050 8/28 docid15470 rev 3 pg power good output threshold rising edge 0.92* v out v falling edge 0.8* v out power good output voltage low i sink = 6 ma open drain output 0.4 v i sc short-circuit current r l = 0 600 800 ma v en enable input logic low v in = 1.5 v to 5.5 v, 40 c < t j < 125 c 0.4 v enable input logic high v in = 1.5 v to 5.5 v, 40 c < t j < 125 c 0.9 v i en enable pin input current v en = v in 0.1 100 na t on turn-on time (4) 30 s t shdn thermal shutdown 160 c hysteresis 20 c out output capacitor capacitance (see typical performance characteristics for stability) 122f 1. all transient values are guaranteed by design, not production tested 2. dropout voltage is the input-to-output voltage difference at wh ich the output voltage is 100 mv below its nominal value. this specification does not apply to output voltages below 1.5 v 3. pg pin floating 4. turn-on time is time measured between the enable input just exceeding v en high value and the output voltage just reaching 95% of its nominal value table 5. electrical characteristics for the ld39050 (adjustable) (continued) symbol parameter test conditions min. typ. max. unit
docid15470 rev 3 9/28 ld39050 electrical characteristics 28 t j = 25 c, v in = v out(nom) + 1 v, c in = c out = 1 f, i out = 10 ma, v en = v in , unless otherwise specified. table 6. electrical characteristics for the ld39050 (fixed output) symbol parameter test conditions min. typ. max. unit v in operating input voltage 1.5 5.5 v v out v out accuracy v out >1.5 v, i out = 10 ma, t j = 25 c -2.0 2.0 % v out >1.5 v, i out = 10 ma, -40 c 1.5 v -40 c < t j < 125 c 200 400 mv e n output noise voltage 10 hz to 100 khz, i o = 100 ma, 30 v rms svr supply voltage rejection v out = 1.5 v v in = v out(nom ) + 0.5 v+/-v ripple v ripple = 0.1 v, freq. = 1 khz i out = 10 ma 65 db v in = v out(nom) + 0.5 v+/- v ripple v ripple = 0.1 v, frequency =10 khz i out = 100 ma 62 i q quiescent current i out = 0 ma 20 a i out = 0 ma, -40 c < t j < 125 c 50 i out = 0 to 500 ma 100 i out = 0 to 500 ma -40 c < t j < 125 c 200 v in input current in off mode: v en = gnd (3) 0.001 1
electrical characteristics ld39050 10/28 docid15470 rev 3 pg power good output threshold rising edge 0.92* v out v falling edge 0.8* v out power good output voltage low i sink = 6 ma open drain output 0.4 v i sc short-circuit current r l = 0 600 800 ma v en enable input logic low v in = 1.5 v to 5.5 v, - 40 c < t j < 125 c 0.4 v enable input logic high v in = 1.5 v to 5.5 v, -40 c < t j < 125 c 0.9 v i en enable pin input current v en = v in 0.1 100 na t on turn-on time (4) 30 s t shdn thermal shutdown 160 c hysteresis 20 c out output capacitor capacitance (see typical performance characteristics for stability) 122f 1. all transient values are guaranteed by design, not production tested 2. dropout voltage is the input-to-output voltage difference at wh ich the output voltage is 100 mv below its nominal value. this specification does not apply to output voltages below 1.5 v 3. pg pin floating 4. turn-on time is time measured between the enable input just exceeding v en high value and the output voltage just reaching 95% of its nominal value table 6. electrical characteristics for the ld39050 (fixed output) (continued) symbol parameter test conditions min. typ. max. unit
docid15470 rev 3 11/28 ld39050 typical performance characteristics 28 5 typical performance characteristics figure 5. v adj accuracy figure 6. v out accuracy figure 7. dropout voltage vs. temperature (v out = 1.5 v) figure 8. dropout voltage vs. temperature (v out = 2.5 v) 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 -50 -25 0 25 50 75 100 125 150 t [c] v adj [v] v in = 1.8 v i out = 10 ma v en = v in 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 -50 -25 0 25 50 75 100 125 150 t [c] v adj [v] v in = 1.8 v i out = 10 ma v en = v in 2.45 2.46 2.47 2.48 2.49 2.5 2.51 2.52 2.53 2.54 2.55 -50 -25 0 25 50 75 100 125 150 t [c] v out [v] v in = 3.5 v i out = 10 ma v en = v in 2.45 2.46 2.47 2.48 2.49 2.5 2.51 2.52 2.53 2.54 2.55 -50 -25 0 25 50 75 100 125 150 t [c] v out [v] v in = 3.5 v i out = 10 ma v en = v in 0 50 100 150 200 250 300 350 -50 -25 0 25 50 75 100 125 150 t [c] dropout [mv] c in = c out = 1 f v en to v in , i out = 500 ma, v out @ 1.5 v 0 50 100 150 200 250 300 350 -50 -25 0 25 50 75 100 125 150 t [c] dropout [mv] c in = c out = 1 f v en to v in , i out = 500 ma, v out @ 1.5 v 0 50 100 150 200 250 300 350 -50 -25 0 25 50 75 100 125 150 t [c] dropout [mv] c in = c out = 1 f v en to v in , i out = 500 ma, v out = 2.5 v 0 50 100 150 200 250 300 350 -50 -25 0 25 50 75 100 125 150 t [c] dropout [mv] c in = c out = 1 f v en to v in , i out = 500 ma, v out = 2.5 v figure 9. dropout voltage vs. output current figure 10. short-circuit current vs. dropout voltage 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0 100 200 300 400 500 600 i out [ma] dropout [v] v en to v in , c in = c out = 1 f 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0 100 200 300 400 500 600 i out [ma] dropout [v] v en to v in , c in = c out = 1 f 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0123456 v drop [v] i sc [a] 125 c 85 c 55 c 25 c 0 c -25 c -40 c v in from 0 to 5.5 v, v en = v in , c in = 1 f, c out = 1 f 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0123456 v drop [v] i sc [a] 125 c 85 c 55 c 25 c 0 c -25 c -40 c v in from 0 to 5.5 v, v en = v in , c in = 1 f, c out = 1 f
typical performance characteristics ld39050 12/28 docid15470 rev 3 figure 11. output voltage vs. input voltage figure 12. quiescent current vs. temperature (v out = 0.8 v) figure 13. quiescent current vs. temperature (v out = 2.5 v) figure 14. quiescent current in off mode vs. temperature 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00.511.522.533.544.555.5 v in [v] v out [v] 125c 85c 55c 25c 0c - 25c - 40c v en = v in , c in = c out = 1 f; i out = 500 ma 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00.511.522.533.544.555.5 v in [v] v out [v] 125c 85c 55c 25c 0c - 25c - 40c v en = v in , c in = c out = 1 f; i out = 500 ma 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] iq [a] no load i out = 0.5 a v in = 1.8 v, v en to v in , c in = 1 f c out = 1 f, v out = 0.8 v 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] iq [a] no load i out = 0.5 a v in = 1.8 v, v en to v in , c in = 1 f c out = 1 f, v out = 0.8 v 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] iq [a] no load i out = 0.5 a v in = 3.5 v, v en to v in , c in = c out = 1 f, v out = 2.5 v 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] iq [a] no load i out = 0.5 a v in = 3.5 v, v en to v in , c in = c out = 1 f, v out = 2.5 v 0 0.1 0.2 0.3 0.4 0.5 0.6 -50 -25 0 25 50 75 100 125 150 t [c] iq [a] v in = 3.5 v, v out = 2.5 v, v en = gnd, c in = c out = 1 f 0 0.1 0.2 0.3 0.4 0.5 0.6 -50 -25 0 25 50 75 100 125 150 t [c] iq [a] v in = 3.5 v, v out = 2.5 v, v en = gnd, c in = c out = 1 f figure 15. load regulation fi gure 16. line regulation (v out = 0.8 v) -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -50 -25 0 25 50 75 100 125 150 t [c] load [%/ma] v in = 1.8 v, i out = from 10 ma to 500 ma, v out = 0.8 v, v en = v in -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -50 -25 0 25 50 75 100 125 150 t [c] load [%/ma] v in = 1.8 v, i out = from 10 ma to 500 ma, v out = 0.8 v, v en = v in -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -50 -25 0 25 50 75 100 125 150 t [c] line [%/v] i out = 1 ma i out = 100 ma v in = from 1.8 v to 5.5 v v en = v in v out = 0.8 v -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -50 -25 0 25 50 75 100 125 150 t [c] line [%/v] i out = 1 ma i out = 100 ma v in = from 1.8 v to 5.5 v v en = v in v out = 0.8 v
docid15470 rev 3 13/28 ld39050 typical performance characteristics 28 figure 17. line regulation (v out = 2.5 v) figure 18. supply voltage rejection vs. temperature (v out = 0.8 v, f = 1 khz) figure 19. supply voltage rejection vs. temperature (v out = 0.8 v, f = 10 khz) figure 20. supply voltage rejection vs. temperature (v out = 2.5 v, f = 1 khz) -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -50 -25 0 25 50 75 100 125 150 t [c] line [%/v] i out = 1 ma i out = 100 ma v in = from 3.5 v to 5.5 v v out = 2.5 v v en = v in -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -50 -25 0 25 50 75 100 125 150 t [c] line [%/v] i out = 1 ma i out = 100 ma v in = from 3.5 v to 5.5 v v out = 2.5 v v en = v in 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 1.7 v to 1.9 v, v out = 0.8 v, v en to v in , i out = 10 ma, freq. = 1 khz 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 1.7 v to 1.9 v, v out = 0.8 v, v en to v in , i out = 10 ma, freq. = 1 khz 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 1.7 v to 1.9 v, v out = 0.8 v, v en to v in , i out = 100 ma, freq. = 10 khz 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 1.7 v to 1.9 v, v out = 0.8 v, v en to v in , i out = 100 ma, freq. = 10 khz 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 2.9 v to 3.1 v, v out = 2.5 v, v en to v in , i out = 10 ma, freq. = 1 khz 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 2.9 v to 3.1 v, v out = 2.5 v, v en to v in , i out = 10 ma, freq. = 1 khz figure 21. supply voltage rejection vs. temperature (v out = 2.5 v, f = 10 khz) figure 22. supply voltage rejection vs. frequency (v out = 0.8 v) 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 2.9 v to 3.1 v, v out = 2.5 v, v en to v in , i out = 100 ma, freq. = 10 khz 0 10 20 30 40 50 60 70 80 90 100 -50 -25 0 25 50 75 100 125 150 t [c] svr [db] c in = c out = 1 f v in from 2.9 v to 3.1 v, v out = 2.5 v, v en to v in , i out = 100 ma, freq. = 10 khz 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 freq [khz] svr [db] i out = 10 ma i out = 100 ma v in from 1.7 v to 1.9 v, v en to v in , v out = 0.8 v, c in = c out = 1 f 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 freq [khz] svr [db] i out = 10 ma i out = 100 ma v in from 1.7 v to 1.9 v, v en to v in , v out = 0.8 v, c in = c out = 1 f
typical performance characteristics ld39050 14/28 docid15470 rev 3 figure 23. supply voltage rejection vs. frequency (v out = 2.5 v) figure 24. noise output voltage vs. frequency v in = 1.8 v, v out = 0.8 v, v en = 1 v, c in = c out = 1 f, t a = 25 c figure 25. enable voltage vs. temperature (v in = 3.5 v) figure 26. enable voltage vs. temperature (v in = 5.5 v) 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 freq [khz] svr [db] i out = 10 ma i out = 100 ma v in from 2.9 v to 3.1 v, v en to v in , v out = 2.5 v, c in = c out = 1 f 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 freq [khz] svr [db] i out = 10 ma i out = 100 ma v in from 2.9 v to 3.1 v, v en to v in , v out = 2.5 v, c in = c out = 1 f 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 f [hz] en [uv/sqrt(hz)] ap - iout = 100ma ap - iout = 10ma ap - iout = 1m ap - iout = 0a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 -25 0 25 50 75 100 125 150 t [c] v en [v] high low v in = 3.5 v i out = 10 ma, v out = 2.5 v, c in = c out = 1 f 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 -25 0 25 50 75 100 125 150 t [c] v en [v] high low v in = 3.5 v i out = 10 ma, v out = 2.5 v, c in = c out = 1 f 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 -25 0 25 50 75 100 125 150 t [c] v en [v] high low v in = 5.5 v i out = 10 ma v out = 2.5 v, c in = c out = 1 f 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -50 -25 0 25 50 75 100 125 150 t [c] v en [v] high low v in = 5.5 v i out = 10 ma v out = 2.5 v, c in = c out = 1 f figure 27. load transient (v out = 0.8 v) v en = v in =1.8 v, i out = from10 ma to 0.5 a, c in = c out = 1 f, v out = 0.8 v figure 28. load transient (v out = 2.5 v) v en = v in = 3.5v, i out from 10 ma to 0.5 a, v out = 2.5 v, c in = c out = 1 f i out v out i out v out i out v out i out v out
docid15470 rev 3 15/28 ld39050 typical performance characteristics 28 figure 29. load transient (v out =2.5 v, i out from 0.1 a to 0.5 a) v en = v in = 3.5 v, i out from 100 ma to 0.5 a, v out = 2.5 v, c in = c out = 1 f figure 30. line transient v en = v in from 4.3 v to 4.8 v, i out = 10 ma, c out = 1 f, c in = no figure 31. start-up transient v en = v in = from 0 v to 5.5 v, i out =10 ma, c in = c out = 1 f, v out = 2.5 v figure 32. enable transient v en from 0 v to 2 v, v in = 3.5 v, v out = 2.5 v, i out = 10 ma, c in = c out = 1f i out v out i out v out v in v out v in v out v in v out v in v out v en v out v en v out figure 33. esr required for stability with ceramic capacitors (v out = 0.8 v) v in = v en = from 1.8 v to 5.5 v, i out = from 1 ma to 500 ma, v out = 0.8 v, c in = 1 f figure 34. esr required for stability with ceramic capacitors (v out = 2.5 v) v in = v en = from 3.5 v to 5.5 v, i out = from 1 ma to 500 ma, v out = 2.5 v, c in = 1 f 0 0.25 0.5 0.75 1 1.25 1.5 1 2 3 4 5 6 7 8 9 10111213141516171819202122 c out [f] (nominal value) esr @ 100 khz [ ] unstable zone stable zone 0 0.25 0.5 0.75 1 1.25 1.5 1 2 3 4 5 6 7 8 9 10111213141516171819202122 c out [f] (nominal value) esr @ 100 khz [ ] unstable zone stable zone 0 0.25 0.5 0.75 1 1.25 1.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 c out [f] (nominal value) esr @ 100 khz [ ] stable zone unstable zone 0 0.25 0.5 0.75 1 1.25 1.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 c out [f] (nominal value) esr @ 100 khz [ ] stable zone unstable zone
application information ld39050 16/28 docid15470 rev 3 6 application information the ld39050 is an ultra low-dropout linear regulator. it provides up to 500 ma with a 200 mv dropout. the input voltage range is from 1.5 v to 5.5 v. the device is available in fixed and adjustable output versions. the regulator is equipped with internal protection circuitry, such as short-circuit current limiting and thermal protection. the regulator is designed to be stable with ceramic capacitors on the input and the output. the recommended values of the input and output ceramic capacitors are from 1 f to 22 f with 1 f typical. the input capacitor must be connected within 0.5 inches of the v in terminal. the output capacitor must also be connected within 0.5 inches of output pin. there is no upper limit to the value of the input capacitor. figure 35 and figure 36 illustrate the typical application schematics: figure 35. application schematic for fixed version 9 9 1 ,1 , ' ' 1 *1 * 9 9 1 ,1 , 1 (1 ( * 3* 3 9 9 7 7 8 28 2 9 9 7 7 8 28 2 & 7 7 8 28 2 & 1& 1          ' /' /       ) ? ) ?  & 1 ,1 , 1 1 2  )2  ) ) 2) 2 ) ? ) ? 
docid15470 rev 3 17/28 ld39050 application information 28 regarding to the adjustable version, the output voltage can be adjusted from 0.8 v up to the input voltage minus the voltage drop across the pmos (dropout voltage), by connecting a resistor divider between the adj pin and the output, thus allowing the remote voltage sensing. the resistor divider should be selected using the following equation: v out = v adj (1 + r 1 / r 2 ) with v adj = 0.8 v (typ.) resistors should be used with values in the range from 10 k to 50 k . lower values can also be suitable, but they increase current consumption. 6.1 power dissipation an internal thermal feedback loop disables the output voltage if the die temperature reaches approximately 160 c. this feature protects the device from excessive temperature and allows the user to push the limits of the power handling capability of a given board without damaging the device. a good pc board layout should be used to maximize the power dissipation. the thermal path for the heat generated by the device goes from the die to the copper lead frame through the package leads and exposed pad to the pc board copper. the pc board copper acts as a heat sink. the footprint copper pads should be as wider as possible to spread and dissipate the heat to the surrounding ambient. feed-through vias to inner or backside copper layers improve the overall thermal performance of the device. the power dissipation of the device depends on the input voltage, output voltage and output current, and is given by: p d = (v in -v out ) i out the junction temperature of the device is: t j_max = t a + r thja x p d where: figure 36. application schematic for adjustable version ' ' 1 *1 * 9 9 1 (1 ( 1 21 2   ) ) ) 2) 2 * 3* 3 - - ' $' $ 9 9 5  5         ' /  ' /       9 9 9 9 ,, 1 ,1 , 1 ,1 , & 1 ,1 , 9 9 7 7 8 28 2 7 7 8 28 2 & 7 7 8 28 2 ) ? ) ?  ) ? ) ? 
application information ld39050 18/28 docid15470 rev 3 t j_max is the maximum junction of the die,125 c; t a is the ambient temperature; r thja is the thermal resistance junction-to-ambient. 6.2 enable function the ld39050 features an enable function. when the en voltage is higher than 2 v the device is on, and if it is lower than 0.8 v the device is off. in shutdown mode, consumption is lower than 1 a. the en pin does not have an internal pull-up, therefore it cannot be left floating if it is not used. 6.3 power good function most applications require a flag showing that the output voltage is in the correct range. the power good threshold depends on the adjustable voltage. when the adjustable voltage is higher than 0.92*v adj , the power good (pg) pin goes to high impedance. if it is below 0.80*v adj the pg pin goes to low impedance. if the device is working well, the pg pin is at high impedance. if the output voltage is fixed using an external or internal resistor divider, the power good threshold is 0.92*v out . the use of the power good function requires an external pull-up resistor, which must be connected between the pg pin and v in or v out . the typical current capability of the pg pin is up to 6 ma. the use of a pull-up resistor for pg in the range from 100 k to 1 m is recommended. if the power good function is not used, the pg pin must remain floating. when en pin is in low state the power good is asserted to the high state.
docid15470 rev 3 19/28 ld39050 package information 28 7 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com. ecopack is an st trademark.
package information ld39050 20/28 docid15470 rev 3 7.1 dfn6 (3x3 mm) package information figure 37. dfn6 (3x3 mm) package outline b&
docid15470 rev 3 21/28 ld39050 package information 28 table 7. dfn6 (3x3 mm) mechanical data dim. mm min. typ. max. a0.80 1 a1 0 0.02 0.05 a3 0.20 b0.23 0.45 d2.90 3 3.10 d2 2.23 2.50 e2.90 3 3.10 e2 1.50 1.75 e0.95 l 0.30 0.40 0.50 figure 38. dfn6 (3x3 mm) recommended footprint
package information ld39050 22/28 docid15470 rev 3 7.2 dfn6 (3x3 mm) packing information figure 39. dfn6 (3x3 mm) tape outline b1
docid15470 rev 3 23/28 ld39050 package information 28 figure 40. dfn6 (3x3 mm) reel outline table 8. dfn6 (3x3 mm) tape and reel mechanical data dim. mm min. typ. max. a0 3.20 3.30 3.40 b0 3.20 3.30 3.40 k0 1 1.10 1.20 b1
package information ld39050 24/28 docid15470 rev 3 7.3 dfn6 (2x2 mm) package information figure 41. dfn6 (2x2 mm) package outline
docid15470 rev 3 25/28 ld39050 package information 28 figure 42. dfn6 (2x2 mm) recommended footprint table 9. dfn6 (2x2 mm) mechanical data dim. mm min. typ. max. a 0.51 0.55 0.60 a1 0 0.02 0.05 b 0.18 0.25 0.30 d2.00 d2 1.30 1.45 1.55 e2.00 e2 0.85 1.00 1.10 e0.50 l 0.15 0.25 0.35
ordering information ld39050 26/28 docid15470 rev 3 8 ordering information table 10. order code order code package packing output voltages ld39050pur dfn6 (3x3 mm) tape and reel adjustable from 0.8 v ld39050pu25r 2.5 v ld39050pu33r 3.3 v ld39050pv10r dfn6 (2x2 mm) 1.0 v LD39050PVR (1) adjustable from 0.8 v 1. available on request.
docid15470 rev 3 27/28 ld39050 revision history 28 9 revision history table 11. document revision history date revision changes 11-mar-2009 1 initial release. 28-feb-2014 2 the part number ld39050xx changed to ld39050. updated the title in cover page, table 10: order code, section 1: diagrams, section 2: pin configuration, section 4: electrical characteristics, section 5: typical performance characteristics, section 6: application information and section 7: package information. deleted order code table. added section 9: revision history. minor text changes. 26-oct-2015 3 added dfn6 (2x2 mm) package. removed device summary table. updated features and description in cover page. updated section 2: pin configuration , table 3: thermal data and table 4: esd performance . added section 8: ordering information . minor text changes.
ld39050 28/28 docid15470 rev 3 important notice ? please read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications, and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant in formation on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of o rder acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2015 stmicroelectronics ? all rights reserved


▲Up To Search▲   

 
Price & Availability of LD39050PVR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X